Recommending Products

Emily Fox & Carlos Guestrin Machine Learning Specialization University of Washington

©2015 Emily Fox & Carlos Guestrin

Where we see recommender systems

Personalization is transforming our experience of the world

Information overload
Image: Second structure
Browsing is "history"
Need new ways
to discover content

You Tube

100 Hours a Minute

What do I care about?

Movie recommendations

©2015 Emily Fox & Carlos Guestrin

Product recommendations

Music recommendations

Recommendations form coherent & diverse sequence

Friend recommendations

Users and "items" are of the same "type"

©2015 Emily Fox & Carlos Guestrin

Drug-target interactions

Cobanoglu et al. '13

What drug should we "repurpose" for some disease?

Building a recommender system

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Solution 0: Popularity

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Simplest approach: Popularity

- What are people viewing now?
 - Rank by global popularity

• Limitation:

- No personalization

MOST POPULAR

E-MAILED BLOGGED SEARCHED 1. Really?: The Claim: Lack of Sleep Increases the Risk of Catching a Cold.

- 2. Magazine Preview: Coming Out in Middle School
- 3. Yes, We Speak Cupcake
- 4. Gossamer Silk, From Spiders Spun
- 5. Tie to Pets Has Germ Jumping to and Fro
- 6. Maureen Dowd: Where the Wild Thing Is
- 7. Maureen Dowd: Blue Is the New Black
- 8. The Holy Grail of the Unconscious
- 9. For Opening Night at the Metropolitan, a New Sound: Booing
- 10. Economic Scene: Medical Malpractice System Breeds More Waste

Go to Complete List »

CUSTOMIZE HEADLINES Creat conalized list of headlines based on v sts. Get Started »

Solution 1: Classification model

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

What's the probability I'll buy this product?

- Pros:
 - Personalized:

Considers user info & purchase history

- Features can capture context:
 Time of the day, what I just saw,...
- Even handles limited user history: Age of user, ...

Limitations of classification approach

- Features may not be available
- Often doesn't perform as well as collaborative filtering methods (next)

Solution 2: People who bought this also bought...

Co-occurrence matrix

People who bought *diapers* also bought *baby wipes*

Matrix C: store # users who bought both items *i & j* – (# items x # items) matrix

- Symmetric: # purchasing $i \partial j$ same as # for $j \partial i$ ($C_{ij} = C_{jj}$)

Making recommendations using co-occurences

- User y purchased *diapers*
 - 1. Look at *diapers* row of matrix

Recommend other items with largest counts
 baby wipes, milk, baby food,...

Co-occurrence matrix must be normalized

- What if there are very popular items?
 - Popular baby item:
 Pampers Swaddlers diapers

- Result:
 - Drowns out other effects
 - Recommend based on popularity

Normalize co-occurrences: Similarity matrix

- Jaccard similarity: normalizes by popularity
 - Who purchased *i* and *j* divided by who purchased *i* or *j*

• Many other similarity metrics possible, e.g., cosine similarity

Limitations

- Only current page matters, no history
 - Recommend similar items to the one you bought
- What if you purchased many items?
 - Want recommendations based on purchase history

(Weighted) Average of purchased items

- User bought items {*diapers, milk*}
 - Compute user-specific score for each item j in inventory by combining similarities:

Score(
$$\int_{\frac{1}{2}}^{1}$$
, baby wipes) =
 $\frac{1}{2}(S_{baby wipes, diapers} + S_{baby wipes, milk})$

- Could also weight recent purchases more

Limitations

- Does **not** utilize:
 - context (e.g., time of day)
 - user features (e.g., age)
 - product features (e.g., baby vs. electronics)
- Cold start problem
 - What if a new user or product arrives?

Solution 3: Discovering hidden structure by matrix factorization

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Movie recommendation

• Users watch movies and rate them

User	Movie	Rating
×.		$\star\star\star\star\star$
×.		$\star\star\star\star\star\star$
×.		$\star\star\star\star\star$
×		****
×		*****
×.		****
×.		$\frac{1}{2}$
×.		*****
×.		****

Each user only watches a few of the available movies

Matrix completion problem

• Data: Users score some movies

Rating(u,v) known for black cells **Rating(u,v)** unknown for white cells

• Goal: Filling missing data?

Machine Learning Specialization

Suppose we had *d* topics for each user and movie

- Describe movie v with topics R_{ν} - How much is it action, romance, drama,... $R_{V} = \begin{bmatrix} 0.3 & 0.61 \\ 1.5 & ... \end{bmatrix}$ Describe user u with topics L_{u} How much she likes action, romance, drama,... Lu= 2.5 0 0.8 ... *Rating(u,v)* is the product of the two vectors $R_{v} = \begin{bmatrix} 0.3 & 0.01 & 1.5 & \cdots & 3 \\ 1.5 & 0.01 & 0.3 & 0.3 & 2.5 + 0 + 1.5 & 0.8 + \cdots & = \\ 1.5 & 0.01 & 0.3 & 0 + 0.01 & 3.5 + 1.5 & 0.01 + \cdots & = 0.8 \\ 1.5 & 0.01 & 0.$ $R_{v} = [0.3 \quad 0.0]$

<u>Matrix factorization model:</u> Discovering topics from data

- Only use observed values to estimate "topic" vectors \hat{l}_{u} and \hat{R}_{v}
- Use estimated \hat{L}_{u} and \hat{R}_{v} for recommendations

Limitations of matrix factorization

- Cold-start problem
 - This model still cannot handle a new user or movie

Bringing it all together: Featurized matrix factorization

Combining features and discovered topics

- Features capture context
 - Time of day, what I just saw, user info, past purchases,...
- Discovered topics from matrix factorization capture groups of users who behave similarly
 - Women from Seattle who teach and have a baby
- **Combine** to mitigate cold-start problem
 - Ratings for a new user from features only
 - As more information about user is discovered, matrix factorization topics become more relevant

Blending models

- Squeezing last bit of accuracy by blending models
- Netflix Prize 2006-2009
 - 100M ratings
 - 17,770 movies
 - 480,189 users
 - Predict 3 million ratings to highest accuracy

Rule	EFFEX Priz	2 er	Update Su	bmit Download	
lea	aderboard		10.05	Display top	20 leaders.
Rank	Team Name		Best Score	% Improvement	Last Submit Time
Rank	Team Name BellKor's Pragmatic Chaos		Best Score 0.8558	% Improvement 10.05	Last Submit Time 2009-06-26 18:42:37
Rank Grand	Team Name BellKor's Pragmatic Chaos Prize - RMSE <= 0.8563		Best Score 0.8558	% Improvement 10.05	Last Submit Time 2009-06-26 18:42:37
Rank Grand	Team Name BeliKor's Pragmatic Chaos Prize - RMSE <= 0.8563 PragmaticTheory		Best Score 0.8558	% Improvement 10.05 9.80	Last Submit Time 2009-06-26 18:42:37 2009-06-25 22:15:51
Grand	Team Name BeliKor's Pragmatic Chaos Prize - RMSE <= 0.8563 PragmaticTheory BeliKor in BigChaos		Best Score 0.8558 0.8582 0.8590	% Improvement 10.05 9.80 9.71	Last Submit Time 2009-06-26 18:42:37 2009-06-25 22:15:51 2009-05-13 08:14:09
Rank Grand	Team Name BeliKor's Pragmatic Chaos Prize - RMSE <= 0.8563 PragmaticTheory BeliKor in BigChaos Grand Prize Team		Best Score 0.8558 0.8582 0.8590 0.8593	% Improvement 10.05 9.80 9.71 9.68	Last Submit Time 2009-06-26 18:42:37 2009-06-25 22:15:51 2009-05-13 08:14:09 2009-06-12 08:20:24
Rank Grand	Team Name BeliKor's Pragmatic Chaos Prize - RMSE <= 0.8563		Best Score 0.8558 0.8582 0.8590 0.8593 0.8604	% Improvement 10.05 9.80 9.71 9.68 9.56	Last Submit Time 2009-06-26 18:42:37 2009-06-25 22:15:51 2009-05-13 08:14:09 2009-06-12 08:20:24 2009-04-22 05:57:03

- Winning team blended over 100 models

A performance metric for recommender systems

The world of all baby products

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

User likes subset of items

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Why not use classification accuracy?

- Classification accuracy = fraction of items correctly classified (*liked* vs. *not liked*)
- Here, not interested in what a person does not like
- Rather, how quickly can we discover the relatively few *liked* items?
 - (Partially) an imbalanced class problem

How many liked items were recommended?

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Recall

liked & shown

liked

3

How many recommended items were liked?

©2015 Emily Fox & Carlos Guestrin

Maximize recall: Recommend everything

©2015 Emily Fox & Carlos Guestrin

BABY WII

Machine Learning Specialization

1 5

Recall

liked & shown

liked

Resulting precision?

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Smari

Optimal recommender

Precision-recall curve

- Input: A specific recommender system
- **Output:** Algorithm-specific precision-recall curve
- To draw curve, vary threshold on # items recommended
 - For each setting, calculate the precision and recall

Which Algorithm is Best?

- For a given precision, want recall as large as possible (or vice versa)
- One metric: largest area under the curve (AUC)
- Another: set desired recall and maximize precision (precision at k)

Summary of recommender systems

What you can do now...

- Describe the goal of a recommender system
- Provide examples of applications where recommender systems are useful
- Implement a co-occurrence based recommender system
- Describe the input (observations, number of "topics") and output ("topic" vectors, predicted values) of a matrix factorization model
- Exploit estimated "topic" vectors (algorithms to come...) to make recommendations
- Describe the cold-start problem and ways to handle it (e.g., incorporating features)
- Analyze performance of various recommender systems in terms of precision and recall
- Use AUC or precision-at-k to select amongst candidate algorithms