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Visual product recommender 
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I want to buy new shoes, but… 
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Too many  
options online… 



Machine Learning Specialization 4	  

Text search doesn’t help… 

©2015 Emily Fox & Carlos Guestrin 

“Dress shoes” 
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Visual product search demo 
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Features are key to  
machine learning 

©2015 Emily Fox & Carlos Guestrin 



Machine Learning Specialization 7	  

Goal: revisit classifiers, but using more 
complex, non-linear features 
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Sentence  
from  

review 

Classifier 
MODEL 

Input:  x 
Output:  y  
Predicted class 
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Image classification 
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Input:  x 
Image pixels 

Output:  y 
Predicted object 
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Neural networks 
    ê 

Learning *very*  
non-linear features 
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Linear classifiers 
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Score(x) = w0 + w1 x1 + w2 x2 + … + wd xd 
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Graph representation of classifier: 
useful for defining neural networks 
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Score(x) =  
w0 + w1 x1 + w2 x2 + … + wd xd 
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What can a linear classifier represent? 

x1 OR x2 x1 AND x2 
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What can’t a simple linear classifier 
represent? 

XOR  
the counterexample  

to everything 

Need non-linear features 
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Solving the XOR problem:  
Adding a layer 

XOR   =   x1 AND NOT x2   OR   NOT x1 AND x2 
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A neural network 
•  Layers and layers and layers of  

linear models and non-linear transformations 

•  Around for about 50 years 
- Fell in “disfavor” in 90s 

•  In last few years, big resurgence 
-  Impressive accuracy on  

several benchmark problems 
- Powered by huge datasets, GPUs,  

& modeling/learning alg improvements  
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Application of deep learning  
to computer vision 
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Image features 
•  Features = local detectors 
- Combined to make prediction 
-  (in reality, features are more low-level) 

Face! 

Eye 

Eye 

Nose 

Mouth 
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Typical local detectors look for  
locally “interesting  points” in image 

•  Image features: collections of  
locally interesting points 
- Combined to build classifiers 
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Face! 
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SIFT [Lowe ‘99] 
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• Spin Images  
[Johnson & Herbert ‘99] 
• Textons  

[Malik et al. ‘99] 
• RIFT  

[Lazebnik ’04]  
• GLOH  

[Mikolajczyk & Schmid ‘05] 
• HoG  

[Dalal & Triggs ‘05]  
• …  

Many hand created features exist  
for finding interest points…  



Machine Learning Specialization 20	  

Standard image  
classification approach 

Input Use simple classifier 
e.g., logistic regression, SVMs 

Face? 
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Extract features 

Hand-created  
features 
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SIFT [Lowe ‘99] 
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• Spin Images  
[Johnson & Herbert ‘99] 
• Textons  

[Malik et al. ‘99] 
• RIFT  

[Lazebnik ’04]  
• GLOH  

[Mikolajczyk & Schmid ‘05] 
• HoG  

[Dalal & Triggs ‘05]  
• …  

Many hand created features exist  
for finding interest points…  

Hand-created  
features 

… but very painful to design 
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Deep learning:  
implicitly learns features 

Layer 1 Layer 2 Layer 3 Prediction 
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Example 
detectors 
learned 

Example 
interest 
points 
detected 

[Zeiler & Fergus ‘13] 
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Deep learning performance 
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Sample results using deep neural networks 

•  German traffic sign  
recognition benchmark 
-   99.5% accuracy (IDSIA team) 

•  House number recognition 
-  97.8% accuracy per character 

[Goodfellow et al. ’13] 
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ImageNet 2012 competition:  
1.2M training images, 1000 categories 
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Huge  
gain 

Exploited hand-coded features like SIFT 

Top 3 teams 
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ImageNet 2012 competition:  
1.2M training images, 1000 categories 
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Winning entry:  SuperVision  
8 layers,  60M parameters [Krizhevsky et al. ’12] 

Achieving these amazing results required: 
•  New learning algorithms 
•  GPU implementation 



Machine Learning Specialization 

Deep learning in computer vision 
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Scene parsing with deep learning  
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[Farabet et al. ‘13] 
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Retrieving similar images 
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Input Image   Nearest neighbors 
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Challenges of deep learning 
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Deep learning score card 
Pros 
•  Enables learning of features  

rather than hand tuning  

•  Impressive performance gains 
-  Computer vision 

-  Speech recognition 

-  Some text analysis 

•  Potential for more impact 
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Deep learning workflow 

Lots of 
labeled 

data 

Training 
set 

Validation 
set 

Learn  
deep  

neural net 
  

Validate  

Adjust  
parameters,  

network  
architecture,… 
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Many tricks needed to work well…  

Different types of layers, connections,…  
needed for high accuracy  

[Krizhevsky et al. ’12] 
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Deep learning score card 
Pros 
•  Enables learning of features  

rather than hand tuning  

•  Impressive performance gains 
-  Computer vision 

-  Speech recognition 

-  Some text analysis 

•  Potential for more impact 

Cons 
•  Requires a lot of data for  

high accuracy 

•  Computationally  
really expensive 

•  Extremely hard to tune 
-  Choice of architecture 

-  Parameter types 

-  Hyperparameters 
-  Learning algorithm 

-  … 
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Computational cost+ so many choices 
=  

incredibly hard to tune 
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Deep features:  
 

       Deep learning 
          + 
       Transfer learning 
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Standard image  
classification approach 

Input Use simple classifier 
e.g., logistic regression, SVMs 

Face? 
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Extract features 

Hand-created  
features 

Can we learn 
features from 

data, even when 
we don’t have 
data or time? 
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Transfer learning: Use data from  
one task to help learn on another 

Lots of data: 
 

 

Learn  
neural net 

Great 
accuracy on 

cat v. dog 

Some data: 
 

 
 

Neural net as 
feature extractor 

+ 

Simple classifier 

Great 
accuracy on 

101 categories 

Old idea, explored for deep learning by Donahue et al. ’14 & others 
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vs. 
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What’s learned in a neural net 

Very specific  
to Task 1 

Should be ignored  
for other tasks 

More generic 
Can be used as feature extractor 
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vs. 

Neural net trained for Task 1: cat vs. dog 
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Transfer learning in more detail… 

Very specific  
to Task 1 

Should be ignored  
for other tasks 

More generic 
Can be used as feature extractor 
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For Task 2, predicting 101 categories,  
learn only end part of neural net 

Use simple classifier 
e.g., logistic regression,  
SVMs, nearest neighbor,… 

Class? Keep weights fixed! 

Neural net trained for Task 1: cat vs. dog 
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Careful where you cut:  
latter layers may be too task specific 

Layer 1 Layer 2 Layer 3 Prediction 
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Example 
detectors 
learned 

Example 
interest 
points 
detected 

[Zeiler & Fergus ‘13] 

Too specific 
for new task Use these! 
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Transfer learning with deep features workflow 

Some 
labeled 

data 
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Extract 
features 

with 
neural net 
trained on 
different 

task  

Learn  
simple 

classifier 

Validate  

Training 
set 

Validation 
set 
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How general are deep features? 
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Summary of deep learning 

©2015 Emily Fox & Carlos Guestrin 



Machine Learning Specialization 44	  

What you can do now… 
•  Describe multi-layer neural network models 
•  Interpret the role of features as local detectors 

in computer vision 
•  Relate neural networks to hand-crafted image 

features 
•  Describe some settings where deep learning 

achieves significant performance boosts 
•  State the pros & cons of deep learning model 
•  Apply the notion of transfer learning 
•  Use neural network models trained in one 

domain as features for building a model in 
another domain 

•  Build an image retrieval tool using deep features 
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