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Retrieving documents of interest



Document retrieval

» Currently reading article you like
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Document retrieval

» Currently reading article you like
* Goal: Want to find similar article
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Document retrieval
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Challenges

 How do we measure similarity?
 How do we search over articles?
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Word count representation
for measuring similarity



Word count document
representation

* Bag of words model
- lgnore order of words

— Count # of instances of
each word in vocabulary
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Measuring similarity
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Measuring similarity
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Issues with word counts — Doc length
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Prioritizing important words
with tf-idf



Issues with word counts —
Rare words
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Common words in doc: "the”, "player’, "field”, "goal”

Dominate rare words like: “futbol”’, "Messi”
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Document frequency

 What characterizes a rare word?
- Appears infrequently in the corpus

 Emphasize words appearing in few docs

- Equivalently, discount word w based on
# of docs containing w in corpus
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Important words

* Do we want only rare words to dominate???

* What characterizes an important word?

- Appears frequently in document
(common locally)

— Appears rarely in corpus (rare globally)

* Trade off between local frequency and
global rarity
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TF-IDF document representation

* Term frequency — inverse
document frequency (tf-idf)
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TF-IDF document representation

* Term frequency — inverse
document frequency (tf-idf)

 Term frequency

« Same as word counts \ ;Ji'l'"?’
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TF-IDF document representation

* Term frequency — inverse
document frequency (tf-idf)

 Term frequency

* |[nverse document frequency

# docs
log

1 + # docs using word
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TF-IDF document representation

* Term frequency — inverse
document frequency (tf-idf)

* Term frequency

 Inverse document frequency
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TF-IDF document representation

* Term frequency — inverse
document frequency (tf-idf)

* Term frequency
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Retrieving similar documents



Nearest neighbor search

Query article:

Corpus:

Specify: Distance metric |
Output: Set of most similar articles |
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1 — Nearest neighbor

* Input: Query article | |
* Output: Most similar article

* Algorithm:
- Search over each art|cle
« Compute s = S|m|lar|ty(

r in corpus

» If s > Best_s, record | || =

and set Best _s$=S
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k — Nearest neighbor

Input: Query article |
Output: List of k similar articles
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Clustering documents



Structure documents by topic

* Discover groups (clusters) of related articles

WORLD NEWS
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What if some of the labels are known?

* Training set of labeled docs

‘le '
ENTERTAINMENT  SCIENCE
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Multiclass classification problem

ECHNOLOGY

Example of
supervised learning
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Clustering

* No labels provided

 \Want to uncover cluster
structure

* Input: docs as vectors
* Output: cluster labels
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What defines a cluster?

* Cluster defined by
center & shape/spread

* Assign observation (doc)
to cluster (topic label)

— Score under cluster is
higher than others

- Often, just more similar to g

assigned cluster center than
other cluster centers
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k-means

e Assume
—-Similarity metric =
distance to cluster

center
(smaller better)
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k-means algorithm

0. Initialize cluster centers
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k-means algorithm

0. Initialize cluster centers

1. Assign observations to
closest cluster center
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k-means algorithm

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2. Revise cluster centers '/.
as mean of assigned
observations
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k-means algorithm

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2. Revise cluster centers
as mean of assigned
observations

3. Repeat 1.4+2. until
convergence
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Other examples



Clustering images

For search, group as:
- Ocean

- Sunset
- Clouds
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Grouping patients by medical condition

» Better characterize subpopulations
and diseases
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Example: Patients and seizures are diverse

channels
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Cluster seizures by observed time courses

Machine Learning Specialization



Products on Amazon

Discover product categories
from purchase histories

* Or discovering groups of users
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Structuring web search results

» Search terms can have multiple meanings
 Example: “cardinal”

» Use clustering to structure output
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Discovering similar neighborhoods

* Task 1: Estimate price at a
small regional level

* Challenge:

- Only a few (or nol) sales
INn each region per month

e Solution:

— Cluster regions with similar
trends and share information

within a cluster City of Seattle
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Discovering similar neighborhoods

 Task 2: Forecast violent crimes
to better task police

* Again, cluster regions and
share information!

* Leads to improved predictions
compared to examining each
region independently

Washington, DC
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Summary for clustering
and similarity
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What you can do now...

Describe ways to represent a document (e.g., raw word
counts, tf-idf,...)

Measure the similarity between two documents

Discuss issues related to using raw word counts
- Normalize counts to adjust for document length
- Emphasize important words using tf-idf

Implement a nearest neighbor search for document
retrieval

Describe the input (unlabeled observations) and output
(labels) of a clustering algorithm

Determine whether a task is supervised or unsupervised

Cluster documents using k-means (algorithmic details to
come...)

Describe other applications of clustering
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