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Deploying an ML service
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Lifecycle of ML in Production
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The Setup...

Suppose we are building a website with
product recommendations,
trained using user reviews.

e 34 .6M reviews
e 2.4M products
e 6.6M users
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Deployment System

Batch training Real—time predictions
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What happens after
(initial) deployment



Lifecycle of ML in Production

(=)

Deployment Evaluation

| |

Management

Monitoring

8 ©2015 Emily Fox & Carlos Guestrin Machine Learning Specialization



After deployment
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Evaluation Management Monitoring

Evaluate and track metrics over time

React to feedback from deployed models
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Feedback loop for ML in production

Batch training Real-time predictions
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Learning new, alternative models

Batch training Real-time predictions
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Key questions

 When to update a model?

 How to choose between existing
models?

* Answer: continuous evaluation and
testing
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What is evaluation?

Evaluation Predictions Metric

What data?
Which metric?
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Evaluating a recommender

Predictions

\

User

squared engagement
error

Offline evaluation: Online evaluation:
When to update model Choosing between models
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Updating ML models
Why update?

* Trends and user tastes change over time

* Model performance drops

When to update?

* Track statistics of data over time

* Monitor both offline & online metrics

» Update when offline metric diverges
from online metrics or not achieving
.desired targets
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A/B Testing: Choosing between ML models
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Other production considerations

« A/B testing caveats
- Also multi-armed bandits

* Versioning
* Provenance
e Dashboards

* Reports
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Machine learning challenges



Open challenges:
Model selection

User info

Purchase history

Product info

Other info
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Open challenges:
Feature engineering/representation

1000530010000

* Bag of word raw counts?
« Normalize?

o tf-idf? (which version???)
* Bigrams

* Trigrams

{ ]
©2015 Emily Fox & Carlos Guestrin Machine Learning Specialization



ing Specialization

Learni

©2015 Emily Fox & Carlos Guestrin

Open challenges:

Scaling
Data is getting big...



Open challenges:
Scaling

Concurrently, models are getting big...

AR model .. per-channel
[.t .t .t ‘ ]J state sequences

1 \ /) multi-channel
T @ EEG data
covariance < =
model
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CPUs stopped getting faster...
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ML in the context of parallel architectures
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But scalable ML in these systems is hard,
especially in terms of:

1. Programmability

2. Data distribution

3. Failures
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What's ahead in this
specialization



2. Regression

Case study: Predicting house prices

e Linear regression

MOdel_S « Regularization:
Ridge (L2), Lasso (L1)

Including many features:
- Square feet
- # bathrooms
— # bedrooms
- Lot size
— Year built
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2. Regression
Case study: Predicting house prices

Alaorithms e Gradient descent
9 e Coordinate descent

RSS(wg,w,) =
(Shouse 1 [WO+W15q'ft'house 1])2
+ (Shouse 2 [W0+Wlsq-ft'house 2])2

+ (Shouse 3 [WO+W1$q'ft'house 3])2
+ ... [include all houses]
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2. Regression
Case study: Predicting house prices

e | Oss functions, bias-variance

@le)alel= pts tradeoff, cross-validation, sparsity,
overfitting, model selection
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3. Classification
Case study: Analyzing sentiment

e Linear classifiers
(logistic regression, SVMs, perceptron)

Models e

e Decision trees
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3. Classification
Case study: Analyzing sentiment

e Stochastic gradient descent
e Boosting

Algorithms

CPENZe :
U N ’

ome  Rules Leaderboard Register Update Submit  Download

Squeezing last bit
of accuracy by

Leaderboard 10.05% oswuyws e,

blending models —_—
g 0.8582 9.80 2009-06-25 22:15:51
0.8590 9.71 2009-05-13 08:14:09
0.8593 9.68 2009-06-12 08:20:24
0.8604 9.56 2009-04-22 05:57:03
0.8613 9.47 2009-06-23 23:06:52

Best Score % InTprovement Last Submit Time
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3. Classification
Case study: Analyzing sentiment

e Decision boundaries, MLE, ensemble
methods, random forests, CART,
online learning

Concepts

7/21/2015

OO00M e
This is probably my favorite place to eat Japanese in

Seattle. My boyfriend and | ordered nigiri of scallop,

Japanese snapper (seasonal), and the agedashi tofu and 2

special rolls. | would skip the special rolls, because the

nigiri and sashimi cuts is where this place excels. The tofu,

as recommended by other Yelpers was amazing. It's more

chewy and the sauce/gravy is the perfect amount of flavor

3 6/11/2015
ining here at the sushi bar made me feel like sitting front | came here having high expectations due to the reviews of
to an amazing performance. We didn't have resos, this place, but i was bit disappointed.
down to the ID after work, got here breathlessly at | The restaurant is small so do make reservations when you
:10pm, and got the last two seats in the place. come here. Dishes cost from $4-26 each and dishes are
small.
for the delicate tofu.

_—
Time
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4. Clustering & Retrieval

Case study: Finding documents

 Nearest neighbors

MOdel_S e Clustering, mixtures of Gaussians
e Latent Dirichlet allocation (LDA)

ol i
ENTERTAINMENT  SCIENCE
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4. Clustering & Retrieval

Case study: Finding documents

KD-trees, locality-sensitive
hashing (LSH)

K-means
e Expectation-maximization (EM)

Algorithms
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4. Clustering & Retrieval

Case study: Finding documents

e Distance metrics, approximation
algorithms, hashing, sampling
Concepts algorithms, scaling up with

map-reduce
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5. Recommender Systems & Dimensionality
Reduction case study: Recommending Products

o Collaborative filtering

MOdelS e Matrix factorization
e PCA
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5. Matrix Factorization & Dimensionality Reduction
Case study: Recommending Products

Rating=

N

36

e Coordinate descent
e Eigen decomposition

e SVD

27
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5. Matrix Factorization & Dimensionality Reduction
Case study: Recommending Products

Concepts

Customers

37
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Products

e Matrix completion, eigenvalues,
random projections, cold-start
problem, diversity, scaling up
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6. Capstone: Build and deploy an intelligent
application with deep learning

Text
sentiment

analysis ‘ ‘

Capstone

Computer
vision

project

Recommenders Deep
‘ learning

Deploy
Intelligent
web app
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