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Deploying an ML service 

©2015 Emily Fox & Carlos Guestrin 



Machine Learning Specialization 3	  

Choosing between  
deployed models 

What is Production? 

 Evaluation 

 
Monitoring 

 Deployment 

Management 

Serving live  
predictions 

Measuring quality of  
deployed models 

Tracking model  
quality & operations 
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Lifecycle of ML in Production 

 Evaluation 

 
Monitoring 

 Deployment 

Management 
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The Setup… 

Suppose we are building a website with 
product recommendations,  
trained using user reviews. 

•  34.6M reviews 
•  2.4M products 
•  6.6M users 
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Deployment System 

Model 
Historical 

Data 

Predictions 

Live 
Data 

 Batch training Real-time predictions 

Feedback 
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What happens after  
(initial) deployment 
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Lifecycle of ML in Production 

 Evaluation 

 
Monitoring 

 Deployment 

Management 
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After deployment 

Evaluate and track metrics over time 

React to feedback from deployed models 

 Monitoring  Management  Evaluation 
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Feedback loop for ML in production 

Model 
Historical 

Data 

Predictions 

Live 
Data 

 Batch training Real-time predictions 

Feedback 
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Learning new, alternative models 

Model 
Historical 

Data 

Predictions 

Live 
Data 

 Batch training Real-time predictions 
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Model 2 
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Key questions 

•  When to update a model? 
•  How to choose between existing 

models? 
•  Answer: continuous evaluation and 

testing 
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What is evaluation? 

 Predictions  Metric 

+ 
 Evaluation 

What data? 
Which metric? 
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Evaluating a recommender 

Model 
Historical 

Data 

Predictions 

Live 
Data 
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Sum 
squared 

error 

User 
engagement 

Offline evaluation: 
When to update model 

Online evaluation: 
Choosing between models 
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Updating ML models 
Why update? 
•  Trends and user tastes change over time 

•  Model performance drops 

When to update? 
•  Track statistics of data over time 

•  Monitor both offline & online metrics 

•  Update when offline metric diverges 
from online metrics or not achieving 
desired targets 
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A/B Testing: Choosing between ML models 

Model 2 

Model 1 

2000 visits 
10% CTR 

Group A 

Everybody gets  
Model 2 

2000 visits 
30% CTR 

Group B 
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Other production considerations 

•  A/B testing caveats 
- Also multi-armed bandits  

•  Versioning 
•  Provenance 
•  Dashboards 
•  Reports 

•  … 
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Machine learning challenges 
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Open challenges: 
Model selection 
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User info 
 

Purchase history  
 

Product info 
 

Other info 

Classifier 

Yes! 

No 

≈	  

Xij known for black cells
Xij unknown for white cells

Rows index movies
Columns index users

X =Rating 

Parameters  
of model 
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Open challenges: 
Feature engineering/representation 

•  Bag of word raw counts? 
•  Normalize? 
•  tf-idf?  (which version???) 
•  Bigrams 
•  Trigrams 
•  … 
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Open challenges: 
Scaling 
Data is getting big… 
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Open challenges: 
Scaling 
Concurrently, models are getting big… 
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CPUs stopped getting faster… 
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ML in the context of parallel architectures 
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But scalable ML in these systems is hard,  
especially in terms of: 

1.  Programmability  
2.  Data distribution 
3.  Failures 

GPUs Multicore 

Clusters 

Clouds 
Supercomputers 
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What’s ahead in this  
specialization 
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2. Regression 
Case study: Predicting house prices 

•  Linear regression 
•  Regularization:  

Ridge (L2), Lasso (L1) 
Models 
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Including many features: 
- Square feet 
- # bathrooms 

- # bedrooms 
- Lot size 
- Year built 

- … 
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2. Regression 
Case study: Predicting house prices 

•  Gradient descent 
•  Coordinate descent Algorithms 
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ŵ 

RSS(w0,w1) =  
   ($house 1-[w0+w1sq.ft.house 1])2 

+ ($house 2-[w0+w1sq.ft.house 2])2 
+ ($house 3-[w0+w1sq.ft.house 3])2 
+ … [include all houses] 
 



Machine Learning Specialization 28	  

2. Regression 
Case study: Predicting house prices 

•  Loss functions, bias-variance 
tradeoff, cross-validation, sparsity, 
overfitting, model selection 

Concepts 
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3. Classification 
Case study: Analyzing sentiment 

•  Linear classifiers  
(logistic regression, SVMs, perceptron) 

•  Kernels 
•  Decision trees 

Models 
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3. Classification 
Case study: Analyzing sentiment 

•  Stochastic gradient descent 
•  Boosting Algorithms 
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Squeezing last bit 
of accuracy by  
blending models 
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3. Classification 
Case study: Analyzing sentiment 

•  Decision boundaries, MLE, ensemble 
methods, random forests, CART,  
online learning 

Concepts 
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Time 
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4. Clustering & Retrieval 
Case study: Finding documents 

•  Nearest neighbors 
•  Clustering, mixtures of Gaussians 
•  Latent Dirichlet allocation (LDA) 

Models 
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SPORTS WORLD NEWS 

ENTERTAINMENT SCIENCE 
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4. Clustering & Retrieval 
Case study: Finding documents 

•  KD-trees, locality-sensitive 
hashing (LSH) 

•  K-means 
•  Expectation-maximization (EM) 

Algorithms 
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4. Clustering & Retrieval 
Case study: Finding documents 

•  Distance metrics, approximation 
algorithms, hashing, sampling 
algorithms, scaling up with  
map-reduce 

Concepts 
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1 0 0 0 5 3 0 0 1 0 0 0 0
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1*3 
+ 
5*2 
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5. Recommender Systems & Dimensionality 
Reduction   Case study: Recommending Products 

•  Collaborative filtering 
•  Matrix factorization 
•  PCA 

Models 
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≈	  

Xij known for black cells
Xij unknown for white cells

Rows index movies
Columns index users

X =Rating 

Parameters  
of model 
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5. Matrix Factorization & Dimensionality Reduction 
Case study: Recommending Products 

•  Coordinate descent 
•  Eigen decomposition 
•  SVD 

Algorithms 
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≈	  

Xij known for black cells
Xij unknown for white cells

Rows index movies
Columns index users

X =Rating 
Form estimates 

Lu and Rv 
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5. Matrix Factorization & Dimensionality Reduction 
Case study: Recommending Products 

•  Matrix completion, eigenvalues, 
random projections, cold-start 
problem, diversity, scaling up 

Concepts 
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Xij unknown for white cells
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6. Capstone: Build and deploy an intelligent  
application with deep learning 
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Capstone 
project 

Recommenders 

Text 
sentiment 
analysis 

Computer 
vision 

Deep 
learning 

Deploy 
intelligent 
web app 


